Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Physiol B ; 193(6): 597-605, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857900

RESUMO

The Orthoptera are a diverse insect order well known for their locomotive capabilities. To jump, the bush-cricket uses a muscle actuated (MA) system in which leg extension is actuated by contraction of the femoral muscles of the hind legs. In comparison, the locust uses a latch mediated spring actuated (LaMSA) system, in which leg extension is actuated by the recoil of spring-like structure in the femur. The aim of this study was to describe the jumping kinematics of Mecopoda elongata (Tettigoniidae) and compare this to existing data in Schistocerca gregaria (Acrididae), to determine differences in control of rotation during take-off between similarly sized MA and LaMSA jumpers. 269 jumps from 67 individuals of M. elongata with masses from 0.014 g to 3.01 g were recorded with a high-speed camera setup. In M. elongata, linear velocity increased with mass0.18 and the angular velocity (pitch) decreased with mass-0.13. In S. gregaria, linear velocity is constant and angular velocity decreases with mass-0.24. Despite these differences in velocity scaling, the ratio of translational kinetic energy to rotational kinetic energy was similar for both species. On average, the energy distribution of M. elongata was distributed 98.8% to translational kinetic energy and 1.2% to rotational kinetic energy, whilst in S. gregaria it is 98.7% and 1.3%, respectively. This energy distribution was independent of size for both species. Despite having two different jump actuation mechanisms, the ratio of translational and rotational kinetic energy formed during take-off is fixed across these distantly related orthopterans.


Assuntos
Gafanhotos , Gryllidae , Humanos , Animais , Gafanhotos/fisiologia , Gryllidae/fisiologia , Músculos , Fenômenos Biomecânicos
2.
Am J Trop Med Hyg ; 92(1): 9-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294612

RESUMO

Parasite antigen diversity poses an obstacle to developing an effective malaria vaccine. A protein microarray containing Plasmodium falciparum apical membrane antigen 1 (AMA1, n = 57) and merozoite surface protein 1 19-kD (MSP119, n = 10) variants prevalent at a malaria vaccine testing site in Bandiagara, Mali, was used to assess changes in seroreactivity caused by seasonal and lifetime exposure to malaria. Malian adults had significantly higher magnitude and breadth of seroreactivity to variants of both antigens than did Malian children. Seroreactivity increased over the course of the malaria season in children and adults, but the difference was more dramatic in children. These results help to validate diversity-covering protein microarrays as a promising tool for measuring the breadth of antibody responses to highly variant proteins, and demonstrate the potential of this new tool to help guide the development of malaria vaccines with strain-transcending efficacy.


Assuntos
Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Estações do Ano , Adulto , Animais , Criança , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...